
LACSI 2005; ITS

1

Abstract— ITS is a powerful and user-friendly software

package permitting state-of-the-art Monte Carlo solution of linear

time-independent coupled electron/photon radiation transport

problems, with or without the presence of macroscopic electric

and magnetic fields of arbitrary spatial dependence. As one of a

few Sandia applications that are targeted for capability class

machines like the ASC Red Storm, we have studied extensively

the performance of this application using thousands of processors.

We have successfully constructed a performance model and

verified the model against measurements on a variety of Sandia

compute platforms. Use of tools like VAMPIR and PAPI in

performance analysis and modeling is discussed. The original

algorithm for computing the statistical quantities after each batch

of Monte-Carlo computations has been modified to yield

improved parallel scaling. Models of alternate message passing

algorithms are investigated and validated against measurements

on the Red Storm.

Index Terms—Performance modeling, performance analysis,

Monte Carlo Radiation Transport

I. INTRODUCTION

HE INTEGRATED TIGER SERIES (ITS) code is an evolving

Monte Carlo radiation transport code that has been used

extensively in weapon-effect simulator design and analysis,

radiation dosimetry, radiation effect studies and medical

physics research. Many individuals from the DOE labs and

NIST have been involved over the years in the development

and enhancement of ITS [1]. The different features/sections of

the code in ITS: TIGER, MITS, CEPXS, XGEN etc., are

applied to an analysis under investigation through the selection

of appropriate pre-processor directives when the code is built.

Physical rigor for the analysis is provided by employing

accurate cross sections, sampling distributions, and physical

models for describing the production and transport of the

electron/photon cascade from 1.0 GeV down to 1.0 keV. The

Manuscript received August 26, 2005. This work was supported in part by

the U.S. Department of Energy, SNL CSRF project

Authors are with the Sandia National Laboratories, P.O.Box 5800,

Albuquerque, NM, 87185 (Contact phone: 505-284-5063; fax: 505-844-

2067; e-mail: mrajan@sandia.gov).

Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States National Nuclear Security

Administration and the Department of Energy under contract DE-AC04-

94AL85000.

ITS code is capable of analyzing particle transport through

both combinatorial geometry models and CAD models. It

also has been significantly enhanced to permit adjoint

transport calculations.

For the purposes of this paper we have analyzed the

performance using as input, data from a real satellite model.

The physical problem solved takes advantage of the MITS

mutli-group/continuous energy electron-photon Monte Carlo

transport code’s capability to address realistic three-

dimensional adjoint computations. The adjoint transport

method is a powerful technique for simulating applications

where the knowledge of the particle flux is only required for a

restricted region of the phase space, but where this knowledge

is required for source parameters spanning a large region of

phase space. The run times for simulations for a complex

combinatorial geometry model using conventional, or forward,

transport are prohibitive and hence the adjoint calculations

used in our satellite model [2].

Our performance analysis of the ITS code was initially

spurred by the JASONs and NAS review of the ASC programs

to assess mapping of a set of DOE applications to

architectures. Another reason for this investigation is because

of the large percentage of compute resources ITS code users

had consumed in the previous years and anticipated similar

usage in the future. Recently we investigated the scaling

characteristics of ITS to tens of thousands of processors.

Execution time measurements have been obtained on various

platforms at SNL; ASCI Red, VPLANT (2.4 GHz Xeon

cluster with Myrinet), ICC (institutional cluster: 3 GHz Xeon

with Myrinet), CPLANT (Alpha cluster with Myrinet) and

more recently on the Red Storm. Our performance model

attempts to follow a similar approach to that expounded by

Kerbyson, et.al [4] and in fact follows closely the model

presented by Mathis, Kerbyson and Hoise [5] in their analysis

of the MCNP particle transport code. The model develops an

analytical expression for the major portions of the execution

time, namely, computation, communication and I/O. At the

present time our expression for the compute time is obtained

by curve-fitting the plot of the measured execution time vs. the

number of histories. For the communication time model we

focused on the communications at the end of each batch of

computations assigned to the processors. This was

accomplished with the VAMPIR tracing tool to obtain the

message sizes and messaging patterns and later correlated to

Performance Analysis, Modeling and Enhancement of Sandia’s

Integrated TIGER Series (ITS) Coupled Electron/Photon Monte

Carlo Transport Code

Mahesh Rajan, Brian Franke, Robert Benner, Ron Kensek and Thomas Laub

Sandia National Laboratories

T

LACSI 2005; ITS

2

the MPI calls in the code. For the compute platform

communication characteristics such as bandwidth and latency,

a set of simple benchmarks were run. The I/O time typically

been a fraction less than 3% and at the present no model has

been investigated.

In this paper we present the details of the model and

compare measured performance against the model for different

architectures. We also present results of tests on the new ASC

Red Storm and use the model to predict performance on it to

10,000 processors. The ITS code has been recently enhanced

to introduce Fortran 90/95 features and in the process it has

also implemented changes in data structures that would

improve performance. As will be seen from the scaling plots

presented below, ITS can suffer a scaling performance penalty

depending on how the history computations are split among

the participating processors and the frequency with which the

statistical tally of the computations are assembled by the

master process. This performance penalty, due to

communication cost incurred in the many-to-one

communication at the end of each batch of computation, has

been remedied by a modified algorithm. We have investigated

a simple implementation using MPI collective communication

calls and measured its performance on the Red Storm. The

MPI collective communication calls (based on MPICH 2.0)

are implemented using a binary reduction algorithm and

executed using MPI point-to-point operations [6]. We also

investigate potential improvements in performance that could

result from using Rebenseifner’s [7] algorithm that promises

better efficiency when message lengths of varying sizes are

communicated.

Finally we also present some PAPI hardware performance

counter results. We are hoping to use these results in tuning

single processor performance and in understanding memory

access patterns of the code to evolve a single processor

performance model. We believe our analysis and code

improvements will enhance the productivity of ITS code users

and permit effective usage of new ASC capability class

machines like the Red Storm. There is a strong impetus from

DOE to push the production use of such systems to utilize

upwards of 4000 processors on a regular basis.

II. ITS CODE FLOW AND SATELLITE COMPUTATIONS

Description of the code and details on using ITS can be

found in ITS User Guide [7]. In this paper, we present a broad

outline of the computation phases and the parallelization

strategy used in ITS The interaction between particles and the

physical geometry under consideration is analyzed by tracking

particle trajectories through the geometry. Typically there is a

linear relationship between the number of particle trajectories

tracked and the execution time once the number of histories

exceeds a few thousand. The ability to conduct independent

computation of particle histories on a geometry replicated on

every processor, combined with the fact that the statistical

uncertainty in any Monte Carlo result decreases as the square

root of the number of histories makes it ideally suited for

parallel computations. While there exists particle transport

codes in which the geometry may also be distributed, like in

LLNL’s Mercury Code[8], our analysis is simplified because

ITS replicates the geometry on all the processors. The basic

computation steps are as follows: (1) the master processor

reads geometry, problem input and broadcasts to all the worker

processes; the number of histories to be computed is divided

among the processors and these in turn may be further divided

into batches to facilitate break up of computations for

convenience in getting intermediate results and keeping the

time of computations between batches correlated to the restart

dumps, (2) the worker processes perform the Monte Carlo

computations, and (3) the master performs Monte Carlo

computation and receives and tallies the data after each batch

of computations for statistical calculations and outputs the

data. Thus based on how the problem is set up we could have

many batches of computations assigned to each processor and

after completion of each batch there being a communication

operation of the tally data from the workers to the master. So

although there is no communication at all between the worker

processors, there is many-to-one communication which, based

on the algorithm used, has significant impact on the parallel

scaling characteristics.

As mentioned in the introduction this analysis was

undertaken with a satellite combinatorial geometry model.

The calculations performed for this work were adjoint point

estimation of KERMA (Kinetic Energy Released per unit

MAss). This simulation is performed by modeling only

photon physics. The adjoint solution allows numerous

radiation sources to be assessed for a single detector. In this

case, the detector was measuring energy deposition at a point

inside of an electronics box. The forward sources assessed

were infinite plane-wave sources of photons with a uniform

energy distribution between 1 and 50 keV. The average

response to these sources was calculated for 472 angular bins

of approximately equal solid angle over all 4p possible

incident directions. Figure 1 illustrates the dosage

computations where the pixels are angular bins of the source

directions and the levels are dose values at the same point on

the object.

The combinatorial-geometry (CG) model of the satellite

comprised of a total of more than 600 CG bodies. Portions of

the satellite are approximated as reduced-density materials

distributed over regions that in reality are a combination of

void and intricate geometries, but the model is among the most

complicated CG models that we have available. Within the

satellite, an electronics box is more accurately modeled with

more than 200 CG bodies. For purposes of this investigation

we focused on a scaled-speedup analysis (weak-scaling) with

3.2 million histories assigned to each processor.

LACSI 2005; ITS

3

Figure 1. Adjoint calculations for the satellite model

assesses the directions of vulnerability

III. PERFORMANCE MODEL

The performance model for ITS parallel computation

consists of two parts: the computation time model and the

communication time model. There is a certain amount of time

spent in I/O, but for typical calculations running several hours

this turns out to be a negligible fraction of the total run time.

Following the approach taken in Ref. [4, 5] the computation

model is related to an intrinsic parameter of the computation,

which here is simply the number of particle histories, Nph . We

measure this quantity using a single processor on each system.

The computation model also depends on the geometry and

therefore such measurements must be carried out for every

geometry. For the satellite geometry the relationship between

single processor execution time and number of histories is a

linear relationship as shown in Figure 2, for the VPLANT

Cluster.

From such measurements the computation time can be

calculated as:

PTNT histphcompute /*”

where Thist, time for a single particle history, is obtained from

the slope of the line in Figure 2. P is the number of MPI

processes taken to be equal to the number of processors.

The communication time can be modeled as:

 tallysetupioncommunicat TTT +=

Ttally refers to the worker-master communication time after

each batch of Monte Carlo computations to gather the statistics

for all the histories computed. This gather operation in ITS

was structured as a many-to-one communication resulting in

the communication time being directly proportional to the

number of processes used in the computation.

Figure 2. Measurement of single processor execution time

on SNL’s VPLANT Cluster

ITS has as the option of assigning all the history computations

to the worker processes leaving the master to coordinate the

computations, this option was not used in our scaling studies.

Therefore p-1 processes serially send the tally data to the

master. The amount of data that is gathered by the master

processor is related to the output of physical quantities

requested by the analyst via the input deck and the size of

these data elements depend again on the problem under

investigation as they are related to the size of the physical

arrays. In ITS the size of most of the important physical arrays

are controlled through an include file in static fashion.

Initially in building the model, we used the VAMPIR

performance analysis tool to obtain the details of the

communication and later correlated it with MPI calls in the

code.

Figure 3. A VAMPIR summary timeline on SNL’s ICC cluster

One could zoom into the red region in Figure 3 to gather the

communication details. For the satellite model under

consideration the details of the messages between a typical

worker and the master is captured in Figure 4.

HIGH DOSE

LOW DOSE

infinite-extent
planar sources

Execution Time, secs

1

10

100

1000

0 20 40 80 160 320 640 1280

Number of Histories x 10**4

E
x
e
c
u

ti
o

n
 T

im
e
,
s
e
c
s

LACSI 2005; ITS

4

Figure 4. Worker-Master tally data communication calls

As seen from Figure 3, the communication time for setup is a

small fraction. Therefore in our model we have chosen to

ignore it although one could build a model for it following a

similar procedure. So the analytical expression for the

communication time is:

Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } *

num_batches * (p-1)

Each processor at the end of a batch of computation sends to

the master a data structure coded in an 8 byte integer array

called batch_info(6) that signals the master on completion of

its task and some book keeping information such as the

execution time for that batch. The master receives the data

and using the same data structure instructs the worker process

to transmit the tally data for the physical quantities (such as

TAU, ALINE, etc in the code). The 432, 368, 48000, and

16M byte messages corresponding to the various physical

quantities are then received by the master from each worker

processor one after another in a serial fashion, from the p-1

processes.

To compute the different terms in the communication time

expression above, we measure the point-to-point

communication time as a function of the message size using

simple MPI benchmarks. This measured information, shown

in Table 1, on bandwidth and latency are used in the

calculation of the communication time as a function of the

number of processors and batches. The total execution time is

readily tabulated against the number of processors, from which

parallel efficiency is calculated. Figure 5 compares the

parallel efficiency obtained with our model against

performance measurements on ASCI Red (janus), CPLANT,

VPLANT and SNL’s institutional cluster – ICC-LIBERTY.

Figure 5. Comparison of parallel efficiency; Model vs.

Measurements on ASCI Red, CPLANT, ICC, and VPLANT.

An objective of our performance modeling effort is not only

to understand performance characteristics of applications, but

to implement changes in algorithm that would improve

performance. Towards this end alternate implementations of

Us

er

co

de

User MPI_

wait_

all

MPI_

Irecv

Us

er

co

de

MPI_recv Us

er

co

de

Us

er

co

de

MPIIs

end

MPI_

Isend

MPI_

wait_

all

Us

er

co

de

Us

er

co

de

MPI_

Isend

48

byte

s

48

byte

s
16.6M

bytes

48000

bytes
368

byte

s

432

byte

s

ITS Parallel Efficiency, Model vs. Measured

JANUS

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Number of Processors

P
a
ra

ll
e
l
E

ff
ic

ie
n

c
y

Model, Parallel

Efficiency

Measured, Parallel

Efficiency

ITS Parallel Efficiency, Model vs. Measured

CPLANT

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Number of Processors
P
a
ra

ll
e
l
E
ff

ic
ie

n
c
y

Model, Parallel
Efficiency

Measured, Parallel

Efficiency

ITS Parallel Efficiency, Model vs. Measured

ICC-LIBERTY

0.6
0.64
0.68
0.72
0.76

0.8
0.84
0.88
0.92
0.96

1

1 2 4 8 16 32 64 128 256

Number of Processors

P
a
ra

ll
e
l
E
ff

ic
ie

n
c
y

Model, Parallel

Efficiency

Measured, Parallel

Efficiency

ITS Parallel Efficiency, Model vs. Measured

VPLANT

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of Processors

P
a
ra

ll
e
l
E

ff
ic

ie
n

c
y

Model, Parallel

Efficiency

Measured, Parallel

Efficiency

Efficiency

Rabenseifners

algorithm

LACSI 2005; ITS

5

the gather phase of the computation using some binary

reduction algorithms were investigated. Thakur and Gropp[7]

discuss efficiency of various algorithms for MPI collective

operations which are now part of the MPICH release (version

1.2.6 and higher). Before we actually implemented a change

we analyzed the potential improvement in parallel efficiency

using Rebenseifner’s [8] algorithm. The expression for the

reduction operation for this algorithm is given by:

pnpnppT ionscommunicat /)1()1(2)ln(2 gba -+-+=

Here p is the number of processors, a is the latency, b is

the message transfer time per byte and g is the local reduction

time per byte and n is the message length. The improved

scaling that would result from implementing this algorithm is

seen in Figure 5 for the data corresponding to the VPLANT

cluster.

Table 1. System parameters used in the computation model

and comparison of parallel overhead at 512 processors

System Pt-to-

pt

BW

MB/s

Pt-to-pt

Latency,

usec

Comp

time,

secs

Comm

time,

secs

Overhead,

Parallel

Efficiency,

f & (1/1+f)

Red Storm 857 7 246.92 19.44 0.078, 0.927

Janus 330 18 1673 53.20 0.03, 0.97

ICC 245 6.8 108 69 0.63, 0.61

VPLANT 209 7.9 156 83 0.53, 0.65

CPLANT 76 40 334 237 0.70, 0.58

Recently we have applied the performance model to the new

ASC Red Storm[8] and used the model to predict parallel

efficiciency to 10000 processors. ITS code has also recently

undergone major rewrite to take advantage of the new

FORTRAN 90/95 features. This rewrite has created new data

structures that has facilitated investigation of the alternate

message passing scheme to replace the O(p) dependent

communication scheme to O(ln(p)) communication algorithm.

In Red Storm the currently installed MPI software based on

MPICH takes advantage of the improved collective

communication calls. So the code was modified to simply use

MPI collective operations. The results of this improvement

can be seen with measured parallel efficiency curve with the

‘new code’ in Figure 6. If the calls to MPICH collective

operations are replaced with Rabenseifner’s MPI collective

algorithm we should see further improvement in performance

as it promises to be more efficient with both long and short

messages. Measurements and models with alternate

algorithms will be included in the final presentation .

ITS Redstorm Parallel Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

N umber o f Processes

OLd Code M easured Apr. 08

Old Code Perf. M odel

New Code M easured-Global

Reduce

Figure 6. Red Storm; model and measured data showing

improved performance with the ‘new code’

IV. PAPI ANALYSIS AND SINGLE PROCESSOR TUNING

Using the new ITS F90/F95 code we have instrumented the

code to get hardware performance counter information using

PAPI. PAPI analysis shows that ITS has only a small

percentage of the instructions that are floating point operation

operations. Moreover, the nature of the particle trajectory

computations has a lot of code branching. This seems to

suggest that proper speculative execution with profile based

compiler optimization on the Xeon, Em64T and Opteron

processors might yield some significant single processor

performance improvement. This data is presently being

collected and analyzed and the final presentation will include

further discussion on this topic.

V. CONCLUSION

We have successfully built and used an analytical

performance model for ITS to understand it’s performance on

all of Sandia’s major computational resources. Our approach

follows closely the approach expounded by LANL’s PAL

team. The performance model and analysis has helped us to

identify bottlenecks in communication which were limiting the

scalability of this application. Along with other code

improvements we have modified the communication algorithm

permitting good scaling of this application to O(10K)

processors.

REFERENCES

[1] J.A. Halbleib, R.P. Kensek, T.A. Mehlhorn, G.D. Valdez, S.M. Seltzer,

and M.J. Berger, “ITS Version 3.0: The integrated TIGER Series of

Coupled Electron/Photon Monte Carlo Transport Codes,” Technical

Report SAND91-1634, Sandia National Laboratories, 1992.

[2] R.P. Kensek, et.al., "DTRA High Performance Computing for Testable

Hardware Initiative Final Report," Sandia National Laboratories,

SAND2001-2900 (2001).

[3] Ang, J.A, personal communications, August 2005 .

[4] Kerbyson, D.J. et.al., “ Predictive Performance and Scalability of

Modeling of a Large-Scale Application”, In the Proceeding of the

IEEE/ACM conference on Supercomputing Sc ‘01, Denver, CO,

October 2001

LACSI 2005; ITS

6

[5] M.M. Mathis, D.J. Kerbyson, A. Hoise, “A performance Model of

nondeterministic Particle Transport on Large-Scale Systems” In Future

Generation Computer Systems, To Appear 2005, LA-UR 02-7313

[6] R. Rabenseifner, “Optimization of Collective Reduction Operations”,

International Conference on Computational Science, June 7-9,

Krakow, Poland, LCNS, Springer-Verlag, 2004.

[7] M. O'Brien, J. Taylor, R. Procassini, "Dynamic Load Balancing of

Parallel Monte Carlo Transport Calculations," The Monte Carlo

Method: Versatility Unbounded In A Dynamic Computing World,

Chattanooga, Tennessee, April 17–21, 2005, on CD-ROM, American

Nuclear Society, LaGrange Park, IL (2005)

[8] Hoise, et.al., “An initial Performance Analysis of the Red Storm

Architecture” LANL PAL on-line distribution March 14, 2005

	INTRODUCTION
	ITS code flow and satellite computations
	Performance Model
	PAPI analysis and Single processor tuning
	Conclusion

